Static and dynamic modulus of spruce structural timber

ALENA ROHANOVA - RASTISLAV LAGANA - VLADIMIR VAČEK
Faculty of Wood Sciences and Technology, Technical University in Zvolen

Abstract: Static and dynamic modulus of spruce structural timber. A comparative study of static and dynamic modulus of spruce structural timber has been performed. 52 structural timber samples were cut from 13 different logs of the same forest stand. Static modulus of each board was obtained from bending test according to EN 408. Dynamic modulus was calculated from board density and measured wave propagation velocity in timber using Sylvatest Duo and MTG Timber Grader devices with build-in structural timber grading standards. Mean MOE from static test according to EN 384 and mean MOE given by Sylvates Duo and MTG Timber Grader were compared. Differences between MTG Timber Grader readings and static MOE were statistically non-significant. Results showed that Sylvatest Duo overestimates MOE and that a correction is required, which takes into account sample density and results of static bending tests.

Keywords: spruce wood, moisture wood, density, static modulus of elasticity, dynamic modulus of elasticity

INTRODUCTION
Wood is a strategic raw material. In majority buildings, it is an inevitable part of constructions. Grading of wood is significant area of wood utilization. Two general methods are used for determination of strength and stiffness properties of wood: visual grading and machine grading. The visual method takes distribution of wood defects on the surface for determination of strength quality. Knots are the main sorting criterion. The method does not take into account wood density, which is significant parameter of wood quality. The machine grading is based on bending principle or other principles such as ultrasound, vibration, radiation, or combination of several indicating properties (Weidenhiller & Denzler 2009) related to stiffness or strength. The most reliable is bending method however, it requires sophisticated technologies.

The recent trend in machine grading focuses on acoustic principles (ultrasound, vibration). The important feature of acoustic method is sound velocity \(c \). It can be related to grading characteristics:

\[
 c = \sqrt{\frac{E}{\rho}} \ [m/s]
\]

where \(E \) is dynamic modulus [MPa] and \(\rho \) is wood density [kg/m\(^3\)].

Grading device MTG Timber Grader uses vibration principles, Sylvatest Duo device uses ultrasound. Reliability of devices can be found while comparing their results with a static bending test according to EN 408.

MTG Timber Grader
MTG Timber Grader is hand-operated device for grading structural timber. It grades based on measured natural frequency of wooden board. Besides that it requires wood species, moisture content (MC), board dimensions and weight. This device provides \(MOE \) at 12% of MC, strength classes according to EN 338 at levels of C18, C24 and C30.

Sylvatest Duo
This portable device can sort boards, trunks or in situ construction elements. Based on time of ultrasound wave propagation between probes and distance between probes it is able to
give \textit{MOE}, \textit{MOR} and \textit{C} class. Sylvatest Duo also allows calculating the dynamic modulus \(E_{\text{dyn}}\) using the equation (1). This can be a useful tool for recalibration of given species from a different location or unknown species when compared with static bending test results.

\textbf{Bending method}

It is performed according to EN 408 and two other standards are taken into account EN 384, EN 338. Results of the method are modulus of elasticity \textit{MOE} and bending strength \textit{MOR} at 12\% of MC.

\textbf{MATERIAL AND METHODS}

For testing we used construction size samples (boards) of spruce wood \((\textit{Picea abies})\). Dimension of these boards are 40x120x2200 mm\(^3\). 52 dried boards were placed into conditioned chamber for reaching equilibrium moisture content \(w = 12\%\) (RH = 65 \%, \(t =20^\circ\text{C}\)) according to EN 384. MC and clear sample density were determined for each board. \textit{MOE} was evaluated using three mentioned methods: bending, ultrasound (Sylvatest Duo), vibration (MTG Timber Grader).

\textbf{RESULTS AND THEIR ANALYSIS}

The basic statistic is shown in the Table 1. From the results one can see the final.

Table 1: Descriptive statistic of clear specimen density and basic outputs of bending, ultrasound and vibration methods. \textit{MOE}_B - static bending test, \textit{MOE}_S - Sylvatest Duo (dynamic modulus -eq.1), \textit{MOE}_{S,corr} - Sylvatest Duo corrected, \textit{MOE}_M - MTG Timber Grader

<table>
<thead>
<tr>
<th>Basic mathematical-statistical characteristics</th>
<th>Density (\rho_{12}) [kg.m(^{-3})]</th>
<th>Bending \textit{MOE}_B</th>
<th>Ultrasound \textit{MOE}_S</th>
<th>Vibration \textit{MOE}_{S,corr}</th>
<th>Vibration \textit{MOE}_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>413</td>
<td>11 518</td>
<td>13842</td>
<td>11518</td>
<td>11303</td>
</tr>
<tr>
<td>Maximum value</td>
<td>494</td>
<td>17318</td>
<td>16703</td>
<td>15532</td>
<td>15584</td>
</tr>
<tr>
<td>Minimum value</td>
<td>347</td>
<td>7107</td>
<td>10833</td>
<td>8405</td>
<td>8047</td>
</tr>
<tr>
<td>Coefficient of variation [%]</td>
<td>8</td>
<td>18</td>
<td>11</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Paired t test showed that there were big differences between \textit{MOE}_S and \textit{MOE}_B from bending test. Differences between other were non significant on significance level of \(\alpha = 0.01\) (Table 2, Figure 1). It is obvious that the \textit{MOE}_{S,corr} and \textit{MOE}_B are absolutely equal due to direct derivation of \textit{MOE}_{S,corr}. MTG device very well matched the static bending test.

Table 2. Results of paired t-test, probability that compared paired groups are equal

<table>
<thead>
<tr>
<th></th>
<th>\textit{MOE}_S</th>
<th>\textit{MOE}_{S,corr}</th>
<th>\textit{MOE}_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{MOE}_B</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0645</td>
</tr>
<tr>
<td>\textit{MOE}_S</td>
<td>x</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>\textit{MOE}_{S,corr}</td>
<td>x</td>
<td>x</td>
<td>0.0137</td>
</tr>
</tbody>
</table>

230
These MOE’s results compared to the density according to standard EN 338 tell us something about reliability of measurements. One can see that MOE from Sylvatest Duo device without taking into account a sample density is off the real result. Similar result was obtained on different set of samples (Rohanova et al. 2010). Readjustment of this device based on a static bending result is required (see MOE_{corr}). Some boards of lower density cross over the standard line according to EN 338 and therefore should be degraded to lower strength classes because of the density (Figure 3).

CONCLUSION

Mean MOE from static test according to EN 384 and mean MOE given by Sylvates Duo and MTG Timber Grader were compared. Differences between MTG Timber Grader readings and static bending MOE were statistically non-significant. Therefore, MTG is more reliable device for measuring MOE when comparing to static bending test results. Sylvatest–Duo device overestimates MOE and a correction is required, which takes into account sample density and results of static tests according to EN 408.
This study was supported by projects under the contract No.VEGA 1/0549/08 and VEGA 1/0565/10.

REFERENCES

1. EN 338 Structural timber Strength classes. 2010.
3. EN 408 Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties. 2003.

Corresponding authors:
Doc. Ing. Alena Rohanová, PhD., Ing. Rastislav Lagaňa, PhD., Ing. Vladimír Vacek
Faculty of Wood Sciences and Technology
Technical University in Zvolen
T.G. Masaryka 24, 960 53 Zvolen
rohanova@vsld.tuzvo.sk
lagana@vsld.tuzvo.sk
vacek@vsld.tuzvo.sk